

SATURN has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101006443.

Underwater Radiated Noise from Vessels (SATURN)

Dr. Johan Bosschers MARIN, Netherlands

Dr. Christ de Jong TNO, Netherlands

TNO innovation for life

DOSITS webinar, 24 April 2024

Saturn **Developing Solutions for Underwater Radiated Noise**

SATURN has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101006443.

Cavitation noise by ship propellers

Johan Bosschers (MARIN) DOSITS seminar; April 24, 2024

Contents:

- Introduction
- Prediction during ship design stage
- Examples of technical mitigation measures (EU SATURN project) •
- Concluding remarks

Introduction to cavitation

cavitation requires nuclei (small gas bubbles, solid particles)

cavitation

Kuiper (1981)

Pressure reduction scales with V^2 (square of ship speed)

Low speed: no cavitation (minimum pressure higher than vapour pressure)Inception speed: minimum pressure = vapour pressurespeed above inception: cavitation (length increases with approx. V²)

MARIN

The propeller operates in the wake of the hull -> loading variation

Example full-scale cavitation observation with high-speed camera

- 182 m bulk carrier
- Propeller diameter 5.8 m
- Design speed 14.8 knots

Spectrum of propeller cavitation noise

Data taken from Arveson & Vendittis (2000)

Prediction and assessment of propeller cavitation noise (experiments)

- Model-scale tests in Cavitation Tunnels or MARIN's Depressurized Wave Basin (DWB)
- Various scale effects need to be accounted for (see e.g. ittc.info)

as received funding iropean Union's 20 research and programme under ement No. 101006443.

Lloyd et al. (2018)

Prediction and assessment of propeller cavitation noise (computations)

- Ship propeller cavitation noise involves large range of length and time scales!
- Boundary Element Method (viscous effects not captured)
- Semi-empirical models for broadband URN

- Scale-resolving Computational Fluid Dynamics (CFD) for broadband URN
- Model-scale only, computationally expensive

Automated propeller design optimization

- Objectives and constraints
 - Thrust, efficiency, URN, ...
 - Cavitation erosion, strength, ...

- Computational analysis of performance
- Optimizer: Genetic algorithm, Particle Swarm, ...
 - Geometry generation
- Optimal geometries
 - Pareto front: series of propellers with best solutions showing trade-off between URN and efficiency

Huisman & Foeth (SMP 2017)

URN reduction using a propeller redesign (twin screw ferry, EU SATURN project)

Significant improvements in fuel efficiency and URN can be obtained with modern (automated) design methods

URN reduction using air bubbles (EU SATURN project)

Potential gain in energy efficiency if combined with

Preswirl fins and ducts

European Union's 2020 research and on programme under reement No. 101006443.

URN mitigation measures using air bubbles

Lloyd et al. (2024)

Concluding remarks

- Technology for machinery noise control is available
- Standardized procedures for URN measurements for ships are being extended from deep to shallow water
- Early assessment of URN by ship propeller cavitation well possible
- Quantitative knowledge of mitigation measures for cavitation noise is growing
- Basic knowledge now available to perform steps in IMO URN Management Plan for individual ships
- Wider application of URN reduction requires experience building

Thank you!

www.SaturnH2020.eu

SATURN has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101006443.

- @Saturn_H2020
- @SaturnH2020
- in

R

- Linkedin.com/company/SaturnH2020
- j.bosschers@marin.nl christ.dejong@tno.nl

