Solutions to reduce vessel noise impacts to marine mammals

Charlotte R. Finday, Aarhus University Charlotte.findlay@bio.au.dk

SATURN has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101006443.

How can we reduce vessel Underwater Radiated Noise (URN)?

1. Increase distance

Illustrations by Amy Dozier (MaREI, UCC)

- 2. Maintenance & Operational measures
- 3. Technological measures

SATURN: DEVELOPING SOLUTIONS TO UNDERWATER RADIATED NOISE

Key Knowledge Gaps

- How do source level reductions affect the area exposed to URN?
- By how much can slowdowns reduce source levels?
- How effective are these approaches at reducing noise impacts to marine mammals?
- Are slowdowns a 'zero-sum game' approach?
- Can we combine these mitigation approaches to reduce URN?

SATURN: DEVELOPING SOLUTIONS TO UNDERWATER RADIATED NOISE

How do source level reductions affect the area exposed?

AARHUS UNIVERSITY

By how much do slowdowns reduce source levels?

Photo by Venti Views on Unsplash

By how much do slowdowns reduce source levels?

Photo by Venti Views on Unsplash

Do speed reductions reduce impacts to marine mammals?

- Proxies for noise impact:
 - Maximum received level (dB re 1 µPa)
 - Exposure duration (min)
- Max received levels \downarrow
 - 20% (16 kn) = 6 dB
 - 50% (10 kn) = 18 dB
- Exposure duration \downarrow
 - 20% (16 kn) = 36%
 - 50% (10 kn) = 76%
- Slowdowns
 all noise impacts
- Supported by ECHO programme (Joy et al. 2019; Burnham et al. 2021)

Are slowdowns a zero-sum game approach?

AARHUS UNIVERSITY

- Slower vessels in habitat for longer more noise exposure?
- Slowdowns ↓ time impacted
- Supported by field measurements of cargo vessels (ZoBell et al. 2021)
- Not a zero-sum game approach!

Can we combine slowdowns with increased distance?

- Move our vessel further from animals
 & protected sites?
- Max received levels \downarrow
- Can we combine with slowdowns?
- Exposure duration \downarrow
- Very slow & distant vessel not audible as below ambient!

Can we combine slowdowns with increased distance?

- Move our vessel further from animals
 & protected sites?
- Max received levels \downarrow
- Can we combine with slowdowns?
- Exposure duration \downarrow
- Very slow & distant vessel not audible as below ambient!
- Reduce noise & lethal ship strike risk (Laist et al. 2014)

Do slowdowns always work?

- Slow (10 knots) and Loud (+18 dB)?
- High max received levels
- 2 x longer exposure duration
- Should we target for maintenance, modification or remove from the global fleet?
- Additional considerations:
 - Optimum speed ranges for ship engines
 - Controllable Pitch Propellers

Co-benefits of speed reductions

↓ Greenhouse Gas Emissions, NOx, SOx, Particulate Matter & Black Carbon

e.g., Khan et al. 2012; Cullinane & Cullinane, 2013; Faber et al. 2017; Leaper, 2019

fuel consumption & port wait times reliability of deliveries & price of bulk goods

e.g., Cullinane & Cullinane, 2013; Lee et al. 2015; Leaper, 2019; Jalkanen et al. 2018; Leaper & Renilson, 2021; Elkafas et al. 2023

↓ risk of lethal ship strikes with cetaceans

e.g., Silber et al. 2012; Conn & Silber, 2013; Laist et al. 2014; Leaper, 2019; Morten et al. 2022

Photo by Kinsey on Unsplash

SATURN: DEVELOPING SOLUTIONS TO UNDERWATER RADIATED NOISE

Examples of technology being trialled in SATURN

TROCHOIDAL PROPELLER

Photo credits: SIREHNA, NAVAL-GROUP, ADV-PROPULSE, FORMES&VOLUMES

PUMPJET

DNV NAVAL GROUP SIREHNAA NAVAL GROUP NAVAL GROUP Consiglio Nazionale delle Ricerche

AIR BUBBLE MITIGATION

What if we modify vessel technology?

- Fast (20 knots) & Modified (-10 dB)?
- Max received levels \downarrow
- Exposure duration \downarrow
- A lot of tech solutions to consider
- Expensive beyond design stage
- Option for new vessels in global fleet?
- Are they harder to detect?

Can we combine approaches?

Conclusions

- Marine mammals regularly exposed to vessel URN
 - ↑ data on vessel URN exposure in key species
 - Different tools available to study exposure/impacts
- What aspects of vessel URN cause response?
- URN may have fitness consequences for marine mammals
 - Short term changes in behaviour affect energetic budgets of individuals
 = long term consequences for populations
 - Focus on responses with fitness consequences
 - Inform population models e.g., DEPONS

SCAN ME

Nachtsheim et al. 2023

SCAN ME

Findlay et al. 2023

BIOSPHOTO / Alamy Stock Photo

Conclusions

- Source level \$\geq\$ substantially \$\geq\$ area exposed to URN
- Moderate speed reductions = large source level ↓
- Speed reductions \downarrow **all noise impacts to marine wildlife**
- Speed reductions
 time soundscape impacted
- Slowing down is effective, scalable & quickly implementable solution to URN

Findlay et al. 2023 N

Nachtsheim et al. 2023

AARHUS UNIVERSITY

SATURN: DEVELOPING SOLUTIONS TO UNDERWATER RADIATED NOISE

Photo by bernd-Dittrich-y7WLLOnJaWs on Unsplash

* * *	
* *	
^★ ★^^	

SATURN has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101006443.

Thank you!

www.SaturnH2020.eu

y

f

 \oplus

@SaturnH2020

- in
- \bowtie

Dominik.Andre.Nachtsheim@tiho-hannover.de

charlotte.findlay@bio.au.dk

@Saturn_H2020 / @chazz_findlay

Linkedin.com/company/SaturnH2020

