

Marine Seismic Surveys: What are they, and how are they done?

A Brief Introduction to Seismic Surveying

Dr. Bob Gisiner, IAGC

www.iagc.org

1 May 2019

Today's Agenda

I. The Sound Source

- I. Single Source
- II. Seismic Array
- III. Other Sources
- II. Performing a Survey
 - I. Equipment
 - II. Vessel Operations
- III. Types of Surveys
 - *I.* 2*D*, 3*D*, and 4*D*
 - II. Multi-vessel Surveys
 - III. Life-of-Field Surveys
- IV. Uses of Seismic Surveys
 - I. Oil & gas exploration
 - *II.* Site selection for cables, pipelines and offshore wind
 - III. Earthquake and tsunami forecasting/preparedness
 - *IV.* Global geophysics/plate tectonics
 - V. Support of expanded EEZ claims

Andrew Long PGS

Single Source

www.iagc.org

<u>Gail.Adams@iagc.org</u> +1 713 957 8080 +1 281 702 4201

Basics Of A Compressed Air Seismic Source

International Association

A Seismic Source Array in Action

Compressed Air Sound Source, aka Air "Gun"

http://www.geoexpro.com/articles/2010/01/marine-seismic-sources-part-i Llandrø M. and L. Amundsen. 2010. GeoExPro v. 7 (1) A typical element ranges in size/volume:

- 10 800 cubic inches or
- 0.15 13 liter or
- A disappointingly small beer to a daypack

Typical air pressure is

- 2000 psi or 14 Mpa or 140 Bar or
- Somewhere between a household pressure washer (1500 psi) and a scuba tank (3000 psi)

International Association

Bubble Pulse

Zhang et al, 2017

Alternative Sources

Bolt e-Source

THE V Figure 5: Example vertical far-field energy spectra of a $3,300 \text{ in}^3$ array (simulated from near-field measurements) of: air-guns with the new design (green) and standard air-guns (red) with the same mix of volumes and the same firing pressure. The source arrays are at a depth of 7.5 m. Note that the spectra differ significantly only above the ghost notch (100 Hz).

• Water gun

• Sparker

www.appliedacoustics. www.marine-seismicequipments.net

• Explosives (www.dosits.org)

ISTRY SINCE 1971

8

International Association

Alternative Sources

Multibeam Echosounders

- Narrower frequency, lower SPL
- Aka Sub-bottom Profiler
- Less depth penetration, equal or greater SEL (continuously on)
- Has been implicated as a possible cause of stranding **Olympic Coast National Marine Sanctuary** Juan de Fuca Canyon

www.Kongsberg.com

International Association

Vibratory/Tonal Sources

Distributed Seismic Source™ – the new gun in town?

GPUSA President Jim Andersen explains how the company's Distributed Seismic Source[®] for marin downhole applications shatters conventional wis

GPUSA DSS in <u>InnovOil</u> August 2015; Nov 2015

Exxon, Chevron, Total MVJIP

- Three protoptypes in various stages of testing
- Petroleum Geo-Services (PGS) flex-tensional shell
- · Applied Physical Sciences (APS) piston driven
- Teledyne-Webb Research (TWR) pneumatic bubble resonance.

Geokinetics AquaVib™

- At-sea performance test 2015
- Flextensional transducer

- Sources produce a range of frequencies
- Typically within 5-300 Hz
- Typically 5-20 s duration
- May be swept, hyperbolic or coded sequences
- Lower peak SPL but similar SEL with little or no 'quiet' time between pulses.

International Association

Seismic Array

www.iagc.org

<u>Gail.Adams@iagc.org</u> +1 713 957 8080 +1 281 702 4201

Configuration of source array

- Near field hydrophones mounted 1 m above each air gun.
- Also measure air-line pressure and water temperature, atmospheric pressure, acoustic position of each air gun, etc.

В

Courtesy Andrew Long PGS

International Association

Geometry of 24 Element, 4450-Cubic Inch Array

International Association

Why An Array? Two Reasons.

You can increase the source level of the array more readily by adding smaller individual elements than making one big single element.

BECAUSE:

- 1) The output of multiple elements adds up in linear proportional to the number
- of elements in the array (i.e., all else being equal, a
- 30-element array will generate
- twice the amplitude of a 15-element array)
- 2) linearly proportional to the air
- pressure of the array (a 4000-psi
- array will have twice the amplitude
- of a 2000-psi array)
- 3) But only proportional to the <u>**cube root**</u> of the air volume.

In other words:

To double the amplitude obtained from a single 125 cubic inch element:

- We can either add a second 125 cubic inch element, or
- We can replace the 125 cubic inch element with a 1000 cubic inch element.

Things to keep in mind:

Source SPL or Intensity expressed as dB is a LOGARITHMIC scale. Pressure is a 2 dimensional phenomenon (a surface), while the bubble is a 3 dimensional phenomenon (a sphere)

International Association

Why An Array? Second Reason

Getting rid of bubble oscillations:

- 1) For signal processing purposes, one single, clean pulse is preferred
- 2) But as the pressure equalizes between the water and the bubble
- 3) The bubble keeps producing sound (at reduced levels) for several oscillations before it rises to the surface

International Association

Figure 19a (credit: Polaraus)

This shows the time-series (amplitude versus time) display of an airgun signal from a 4450 in³ array that has 33 active guns. The green numbe are the theoretical back-calculated values for this array if one could measure the full output at 1m from the center, thus the units bars at 1m. The black numbers are the actual maximum values in bar-meters that one would measure given the array dimensions of about 14m by 14m.

Seismic pulses are very consistent

- Pulse duration <01 s •
- Peak-to-peak SPL is SPL_{peak} +6 dB •
- RMS SPL is SPLpeak -6 dB •
- SEL is SPL_{peak} -16 dB

International Association

Propagation Effects

FIGURE 3.5. Peak SPL, *rms* SPL, and sound exposure level (SEL) versus range for 3000 in³ array airgun pulses at the SSV site: (a) endfire on OBH A1, and (b) broadside on OBH A1, B, and C. Solid line is best fit of the empirical function to SPL_{rms90} values. Dashed line is the best-fit adjusted to exceed 90% of the SPL_{rms90} values. Blees et al 2010, JASCO Chukchi

THE VOICE OF THE GEOPHYSICAL INDUSTRY SINCE 1971

geophy

Array Directivity

Figure 23b (courtesy IAGC)

geophys

This shows the modeled sound pressure (zero-to-peak) on an inline vertical slice through the centre of the array. The depth of the array is 7.5 metres, and the total frequency band used is 0-400 Hz. It has 18 elements arranged in three subarrays each 15 metres long and separated by 7.5 metres. It has a total volume of 5205 cubic inches and is charged to 2000 psi. The elements at the front (left) of the array are larger and this accounts for the inline asymmetry. The yellow crosses indicate positions of the source elements. Contours are shown from 210dB re µPa² upwards.

Figure 23a (courtesy IAGC)

This shows the modeled sound pressure (zero-to-peak) on a horizontal slice at a depth of 12.5 metres. The depth of the array is 7.5 metres, and the total frequency band used is 0-400 Hz. It has 18 elements arranged in three subarrays each 15 metres long and separated by 7.5 metres. It has a total volume of 5205 cubic inches and is charged to 2000 psi. The elements at the front (left) of the array are larger and this accounts for the inline asymmetry. The yellow crosses indicate positions of the source elements. Contours are shown from 210dB re µPo² upwards.

International Association

THE VOICE OF THE GEOPHYSICAL INDUSTRY SINCE 1971

18

Why Sources Need The Umph They Have

At each layer, 5% of what hits that boundary gets reflected.

Just from reflections, amplitudes are down ~ 34 dB.

Amplitude decreases directly as the distance increases, so after 1000 meters, amplitudes are down 60 dB from that alone.

Together, the 2 effects mean amps are down more than 94 dB if these 10 reflectors go down 500 meters.

Add to this the Earth's attenuation, which is a few dB, and not much amplitude is left.

International Association

The technologies for collecting data have not changed as much as the technologies for getting more out of the data

Total's latest supercomputer, Pangea built by Silicon Graphics (SGI), was upgraded from its original 2.3 petaflop capacity installed early in 2013 to 6.7 petaflops, placing it among the top ten of the Top500 ranking (Nov 2015), and first in the industry category of the list.

The main drivers for such IT investment are to:

- · Improve the accuracy of subsurface imaging,
- · Optimise the development and production of Total's producing fields, and
- Time saving, by shortening the study duration.

International Association

Propagation Effects

International Association

Propagation Effects

Martin et al 2017 Greenland

International Association

Performing a Survey

International Association

Equipment

- A typical fleet for 3D seismic consists of:
 - The seismic vessel acquiring the geophysical data.
 - 1 or 2 chase boat that:
 - Guard the in sea equipment
 - Ward off fishing vessels and other vessels
 - Scout ahead of the seismic vessels (ice, obstructions, shallow water)
 - A supply vessel to:
 - Bring out supplies and fuel
 - Take refuse
 - Take data back to port
 - Occasional transfer of crew members.

International Association

Aerial View of Seismic Vessel in Operation

Courtesy of Peter Seidel - TGS

Seismic Survey Vessel Schematic (not to scale)

Streamer leveling unit ("bird") Streamer deflectors Streamer tow points Buoy Sound Wave Acoustic Receivers Source (Streamers) Sound Wave Sound Reflection Surface Streamer reels

International Association

Courtesy of Peter Seidel - TGS

Tail buoy

International Association

Courtesy of Peter Seidel - TGS

Keeping Track of In-Sea Equipment

International Association

Vessel Operations

International Association

Support Vessels (not to scale)

31

of Geophysical Contractors

Deployment and Retrieval

- Deployment and retrieval times are dependent on many variables including the length of streamers and weather conditions.
- Typical times are:
 - 8 X 12 km streamers = 6 days to deploy 3 days to retrieve
 - 12 X 6 km streamers = 4 days to deploy 2 days to retrieve
 - (Source deployment or retrieval is about 3 to 4 hours)

- Line change and circle times have many variables but are predominantly determined by streamer length.
- Some typical line change times are:
 - For 12 km streamers 7-8 hours
 - For 8 km streamers 3-4 hours
 - For 6 km streamers 2.8 3.5 hours

Some typical circle times are:

- For 12 km streamers 10 hours
- For 8 km streamers 5
- For 6 km streamers -
- 5 hours 4 hours

International Association

Planning

589 69	10 69	91	692	693	694	695	696	697	698	699	700	701	661	662	663	664	665	666	667	668	669	•	Am	erigo	Fina	I S Re	ecord	ls (De	ecima	ited)	Ŷ	51			— —	2	Ę		7
733 73	4 73	35	736	737	738	739	740	741	742	743	744	745	705	706	707	708	709	710	711	712	713		Am	erigo	3D F	replo	ot Pol	ygon	- 2,9	10.81	sq m	ni i			TG	S/	<u> </u>		
77 7	8 77	79	780	781	782	783	784	785	786	787	788	789	749	750	751	752	752	754	755	786	757	758	759	760	761	762	763	764	765	766	767	71		A	AERI	GO 31)		ō
821 83	2 82	23	824	⁸²⁵	11826 11851 -	827 SSIDI	ni ⁸²⁸ a	829 NVOI	830	831	832	833	793	794	795	796	797	798	799	899	-00	802	803	° ∆ e	sof Sot	o [°] ่Ωีลเ	807 nvon	808	809	810	811	8	MUL		NT 3D		SURV	/EY	9
865 86	6 86	67	868	869	870	871	872	873	874	875	976	877	837	838	839	840	841	842	843			846	847	848	849	850	851	852	853	854	855	8 108	NOPEC has used its	Proje best officita to prode 1555 NOPEC assume	sction: WGS 199 use this map free of- excellability or resp	4 UTM Zone 16N ros.utileation of se estability for reliance p	no shall be at the r laced thereon.	sale risk of the sour.	-
909 9 [.]	0 91	11	912	911	914	915		917	918	106	strê?cti o	on ⁹ 0	881	882	883	884	886	886					891	892	893	894	895	896	897	898	899	900	901	902	903	904	905	906 9	لــ 907
953 95	i4 95	55	956	957	958	3000	960	961	982	963	_	965	925	926	927		929	50						936	937	938	939	940	941	942	943	944	945	946	947	948	949	950 8	1 51
997 99	18 95		1000	1001	R	1003	1004			1037	1008	1009	969	970		972	13								981	982	983	984	985	986	987	988	989	990	991	992	993	994 S	995-
29 3			32	33	34	35	36	37	38	39	43	41			3	/	5	6	1	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
73		6	78	77	08	79	80			83		83		46					51					56			59	60	61	62	63	64	65	66	67	68	69	70	71
117	8	19	120	121			124		126				83				93			96								104	105	106	107	108	109	110	111	112	113	114 1	15
161 16	2	63	164					169					133								141			144					149	150	151	152	153	154	155	156	157	158 1	59
205 20	16 20	70	208								216		177	178								186	187							194	195	196	197	198	199	200	201	202 2	203
249 25	iO 25	51	252	253									221		223						229		231	232							239	240	241	242	243	244	245	246 2	.47
293 29	14 29	95	296	297	298						304		265											276								284	285	286	287	288	289	290 2	<u>/</u> 91
837 33	8 33	39	340	341	342	343	344	345				349	309							316			319	320	321	322							329	330	331	332	333	334 3	135
881 38	2 38	83	384	385	ATN 386	387	388	1 ey 389			392		353											364	365	366	ge 367							374	375	376	377	378 3	J79
125 42	6 42	27	428	429	430	431	432	433						398			401			404			407			410	411								419	420	421	422 4	23
169 43	0 47	71	472	473	474	475	476	477	478						443						449			452			455	456								464	465	466 4	67
i13 5	4 51	15	516	517	518	519	520	521	522	523						199	488	490	491	492	199	494	496	4.9.6	487	498	499	2500	503	50,24								510 5	11
57 5	i8 55	59	560	561	562	563	564	565	566	567	566		20	-530-	-131-	*** 532	A 993	534	635	536	537	638	539	640	541	542	543	644	545	546	2000	1999	19997	1000	13377	12211	1052	35 4 5	i55
601 60	12 60	03	604	605	606	607	608	609	610	611	612		73	574	675	576	577	- 228	579	58D	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598 5	i99
645 64	6 64	47	648	649	650	651	652	653	654	655	656	657		618	619	620	621	822	600	824			621	628	629	630	631	632	633	634	635	636	637	638				lega e	J43
689 69	10 69	91	692	693	694	695	696	697	698	699	700	701	661	662	663	664	665	666	667	668	669	870	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686 6	;87
/33 73	14 73	35	736	737	738	739	740	741	742	743	744	745	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730 7	/31

International Association

Teardrop Line changes

Shutdowns for Mammals

THE VOICE OF THE GEOPHYSICAL INDUSTRY SINCE 1971

geophysics Rúcks!

geophysics Coverage with downtime (10-20%)

International Association

geophysics Coverage after backfilling missed lines

International Association

Types of Surveys

International Association

2-D surveys tend to be coarser scale over larger areas while 3-D surveys cover smaller areas with more densely spaced lines to resolve detailed features of interest.

International Association

2-D surveys use one receiving streamer; 3-D surveys used multiple receiving streamers

Variants on 3-D

- WAZ and RAZ one or more sources; two or more receive arrays.
- 4-D multiple 3-D surveys over time to monitor progress of extraction

Narrow range of azimuths

Principle of 4D acquisition

Gullfaks field

Bigger Ships = Reduced Cost, Reduced Time, Reduced Fuel and Reduced Sound

Wider tow generally means higher efficiency (and lower cost per km2)

	6 Streamer Vessel (2006)	16 Streamer Vessel (2016)
Configuration	6 streamers with 100m separation	16 streamer with 75m separation
Sail Line Separation	300m	600m
Number of Source Points	Ν	N/2
Survey Duration	M days	M/2 days

Fisk og Seismikk 2016, 6.-7. April, Ålesund

International Association

THE VOICE OF THE GEOPHYSICAL INDUSTRY SINCE 1971

44

A Quick Word About the Business Model for Seismic Surveys

- Sole Source
 - A seismic company collects data under contract to one client.
 - The contract usually results in the data belonging to the client
 - There are intermediate contractual relations where the seismic operator might contract with two or more clients and data rights could vary
- Multi-Client
 - A seismic company may contract with multiple clients or package multiple data sets for sale as a bundle.
 - The data belong to the seismic company; the customers have limited rights
 - "SPEC" data
 - The seismic operator collects the data on "speculation" that there will be customers for the data
 - · The risk falls on the seismic operator
 - Multi-client spec data collection has increased rapidly in the last 20 years or so: customers like the reduced risk burden, seismic companies like the potential for better profits.

Re-processed Data: Companies may buy, sell and bundle libraries of data sets. They may "get more out of the data" through new proprietary data processing algorithms

THE VOICE OF THE GEOPHYSICAL INDUSTRY SINCE 1971

International Association

Fleet Reductions Since 2014 Downturn

Seismic Vessel Count and Renewal

The total number of 3D seismic streamer vessels has been reduced significantly.

Fisk og Seismikk 2016, 6.-7. April, Ålesund

THE VOICE OF THE GEOPHYSICAL INDUSTRY SINCE 1971

17

PGS

Other seismic methods

Vertical Seismic Profiling (VSP), aka "borehole seismic"

THE VOICE OF THE GEOPHYSICAL INDUSTRY SINCE 1971

Magseis-Fairfield Nodal

Encoded Source Sequences ("Popcorn Shooting")

- Robertsson et al. (2008) discussed the idea of firing a marine source array sequentially (rather than activating all sub sources at the same time).
- Sub-elements are fired individually over a range of time, yielding a sequence of smaller impulses.
- "Popcorn Shooting" can reduce peak sound level output.

References:

EAGE 2014: M.B. Mueller* (ETH Zurich), J.O.A. Robertsson (ETH Zurich) & D.F. Halliday (Schlumberger Gould Research): Simultaneous Source Separation Using Encoded Source Sequences SEG 2013: Ray Abma and Allan Ross (BP), Popcorn shooting: Sparse inversion and the distribution of airgun array energy over time

Fisk og Seismikk 2016, 6.-7. April, Ålesund

Uses of Seismic Surveys

Purpose

- Image the subsurface
- Evaluate the acreage
- Identify potential hydrocarbon accumulations

Reducing footprint – fewer wells

- Condemns non-prospective areas
- Replaces drilling as an exploration tool
- Delineates reservoir boundaries

Reducing risk – drilling hazard prediction

- Ensure load-bearing ability of substrate. Seismic surveys help to avoid:
 - $\,\circ\,$ High pressure shallow gas/hydrates, etc.
 - Pore pressure prediction shallow and deep
- Prolong the life of the asset

ENERGY STARTS HERE™

Marine Geophysical Exploration

Making a Case for Expanding a Nation's EEZ

Maximum Limit - 350 Nautical Miles (M) or 100 M from the 2500 m isobath (whichever is greater)

H

Mediterranean Earthquake and Tsunami Risk Mapping

Making a Case for Expanding a Nation's EEZ

of Geophysical Contractors

Acknowledgements

For my education about seismic surveys I have many people to thank: Robert Laws (Schlumberger), Mike Jenkerson (ExxonMobil), Dave Hedgeland (BP), Phil Fontana (Polarcus), Jack Caldwell (Geospace Technologies), Peter Seidel (TGS), Roger Keyte (Fairfield Nodal), Andrew Long (PGS), Ingebret Gausland (Equinor) and many others.

Any mistakes, however, are completely my own.

International Association

Questions?

www.iagc.org

<u>Gail.Adams@iagc.org</u> +1 713 957 8080 +1 281 702 4201